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LElTER TO THE EDITOR 

Self-consistent projection-operator method for describing the 
non-Markovian time-evolution of subsystems 

J Seke 
Institut fur Theoretische Physik, Technische Universitat Wien, Wiedner Hauptstrasse 
8-10/136, A-1040 Wien, Austria 

Received 12 September 1989, in final form 27 October 1989 

Abstract. It is pointed out that the usual projection-operator method yields non-positive- 
definite reduced density operators for subsystems. In order to obtain non-negative prob- 
abilities, a new self-consistent projection-operator method for treating non-Markovian 
behaviour is developed. Finally, the applicability of the method is shown by an example. 

The idea of the projection-operator method (POM) is the derivation of a so-called 
master equation (ME)  for a reduced density operator describing the dynamics of a 
subsystem A being the relevant part of the total system A+ R (consisting of two 
interacting systems A and R). System R usually refers to a large system (reservoir). 
The FQM was developed by Nakajima [l]  and Zwanzig [2-41 and was applied to 
different problems of non-equilibrium statistical mechanics (see, e.g., [5-91 and the 
references quoted therein). 

By applying the POM [l-4,8] to the Liouville (von Neumann) equation for the 
statistical density operator p(  t )  in the interaction picture (this picture is used throughout 

the following exact M E  can be derived: 

where we used 

and the special initial condition of statistically independent systems A and R 

P (0) = PP (0) = PA (0) 0 PR (0). 
Further, we have introduced the following notation: Z = ZAO ZR as the unit operator 
in the Hilbert space X = XA 0 5YR of the total system A + R, T as the Dyson time-ordering 
operator, TrAR as the trace over .%A@%'~, and pA(0) and pR(0) as the initial density 
operators of systems A and R. 
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However, as can be seen from (1.2), the M E  is a very complicated integro-differential 
equation which cannot be solved exactly. In order to obtain a solution, a perturbative 
series expansion in the strength of interaction between systems A and R in the M E  

should be carried out. 
As long as no approximation is used, the M E  (cf (1.2)) is an exact equation of 

motion for the relevant part of the density operator Pp( t )  and therefore not only the 
norm 

T ~ A R  [ pp( = T~AR[P(  t ) ]  = 1 ( 6 )  

(nlPp(t)ln) 3 0 for any In) in X (7) 

is conserved, but the positive definiteness of the density operator Pp( t )  is also conserved 

In other words, the diagonal matrix elements of Pp( t )  are probabilities and lie always 
between zero and unity. 

The application of the Born approximation (BA) (which is referred to as second- 
order perturbative approximation in this letter) leads to the following non-Markovian 
equation: 

One important fact which has been treated extensively in the literature in the case of 
Markovian ME (see, e.g., [lo]), but unfortunately not sufficiently in the case of 
non-Markovian ME, is the positive definiteness (cf (7)) of the density operator PpBA( t )  
(cf (8)). This latter is only fulfilled if the M E  (8) can be led back to the Liouville 
equation, i.e. if the integral term vanishes. This, however, means a reduction to the 
Liouville equation of a subspace which makes the application of the POM superfluous. 
Moreover, it is obvious that the usually used projection operators (PO) [l-91 cannot 
fulfil the condition required for the positive-definiteness of the reduced density operator 
in (8). 

Knowing these difficulties, the application of the POM to the Schrodinger equation, 
instead of the Liouville equation, seems to be a logical consequence. The restriction 
of the initial condition to the pure states may be removed by applying the POM to each 
of the initial states appearing in the statistical mixture, and afterwards weighting the 
results with the probabilities for the occurrence of the corresponding initial states. 

In the Hilbert space of the total system %',OXR, the Schrodinger equation in the 
interaction picture reads as 

By introducing a time-independent PO P, it is possible to divide the state vector I$(  t ) )  
into a relevant part P l $ ( t ) )  and an irrelevant part ( Z - P ) [ + ( t ) ) .  The application of 
the PO P to the Schrodinger equation (9) leads to two coupled equations: 
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In order to integrate (1 l ) ,  we have to introduce an integrating operator U( f ,  f ’ )  (a kind 
of time-development operator) satisfying the equation: 

aU(t, t ‘ )  
art  

= i U( t, t ’ ) (  I - P ) H A R  ( r ’ )  

U (  1, f )  = I. (13) 

The formal solution for U(t ,  t ’ )  is given by 

(14) 
1 ’  ) U (  f ,  f ’ )  = 7 eXp( -i dt”( I - P ) H A R (  1’‘) 

By applying the integrating operator U( t, 1 ’ )  to ( 1  l ) ,  we obtain a connecting equation 
between I $ ( t ) )  and P J $ ( t ) ) :  

( I  - P)l$( 1 ) )  = U (  f ,  o ) ( I  - p)I$(o)) - i  lor dr’( U(t,  t ’ ) ( I -  P ) H A R ( f ’ ) P ( $ (  1 ’ ) ) .  ( 1 5 )  

In order to make the first term on the RHS of (15) vanish, we choose special PO satisfying 
the initial condition 

PI$(O))= I$(O))= l $ ( O ) ) A @ l + ( O ) ) R .  (16) 
By inserting (15 )  and (16) into (lo), we get a closed exact EM for the relevant part of 
the state vector PI$( t ) ) :  

= - i P H A R (  f)pl$( ?))- I dt’ P H A R (  1 )  U (  1, f ’ ) (  I - P ) H A R (  t’)PI+( f ’ ) ) .  (17) dPl*( 
dt  0 

The use of the second-order approximation for the interaction Hamiltonian HAR 
(in the present letter referred to as BA) in (17) means that all terms higher than second 
order are to be set to zero. That is to say, in order to be able to make a self-consistent 
BA in (17), the following relation should be fulfilled: 

(18) 

(which can be obtained by inserting (14) into (17)). This relation reflects a self- 
consistent truncation condition of the series expansion in HAR of (17), since it means 
that the action of the Hamiltonian H A R  is restricted to a subspace X”‘” and is given 

( I  - P ) H A R (  I - P )  = 0 

by 
HziN’( f ) = PN - 1 H A R  ( f ) I” + I ’( ” H A R  ( r ) P N  - 1 - PN - I H A R  ( f ) PN - 1 

N = 1 , 2 , .  . . (19) 
where 1’‘” is the unit operator of the subspace X s ( N ’ .  This subspace X’“) is created 
in the Nth order of our approximation scheme and is due to the N-fold action of the 
non-restricted interaction Hamiltonian H A R .  That is to say, X s c N )  is defined by the 
state vectors: 

{ ( H A R ) ’ I $ ( O ) ) ,  I = O ,  1 , .  . . , N ;  N a  1). (20) 
(All lower-order spaces X S i k )  are contained in the higher-order spaces X””, m > k, 
as subspaces.) The PO P N - ,  is the projector on the subspace X S c N - ’ )  and is defined by 

(21) 
It should be mentioned that the restriction of the Hamiltonian HAR to a given subspace 
X s ( N )  has the consequence that the whole time evolution as well as the norm conserva- 
tion of the state vector is restricted to this subspace. 

p N - ,  = z S ( N - 1 ) .  
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In our approximation procedure, different orders ( N  = 1 , 2 , .  . .) of the BA exist; 
each of them results in a restriction to a subspace of the same order N. The order of 
the BA is given by the choice of the PO, i.e. the order of the BA is always higher by 
one than that of the corresponding PO (cf (21)). 

In the BA of the Nth order, (17) reduces to 

d P N  - I I IC, ( t 1) BA 

d t  

-i pp~ - 1 H A R  ( f ) p~ - 1 - d PN - 1 H A R  ( f )[ 1'' N ,  - pp~ - I ]  

N =  1 , 2 , .  . . . (22) 
Jo ' 

x H A R  ( t  - ~)p,w-iI+( t - 
Since probability amplitudes in the subspace 2t'(N-1) can be calculated from (22), it 
is obvious that the probabilities, which are the squares of the moduli of probability 
amplitudes, are always non-negative. 

Finally, it should be stressed that within our POM the normalisation is automatically 
fulfilled, because the BA of the Nth order leads to a restriction to the subspace %'(N). 
In other words, as it should be in a self-consistent method, our equation (22) is an 
exact equation for the restricted Hamiltonian H:kpJ)( t)  given by (19), and therefore 
the norm is always conserved in the corresponding subspace 2tscN). 

In conclusion, to illustrate our new POM, we apply it to the case of spontaneous 
emission from a two-level hydrogen atom. In this case the interaction Hamiltonian, 
which neither implies the rotating-wave approximation nor ignores the retardation 
effects (dipole approximation), is [ 111 

H A R ( t )  = Iom dw[g(w)a-(w) e-'"'-g*(w)a+(w) e'"']@(S+ eiwO' - S -  e-'"O' 1. (23) 

Here S' are the atomic dipole-moment operators given by 

where 
s+ = (1)(21 s- = )2)( 1 I 

11) = In, = 2,jl  = 1, mI = 0) and 12) = In2 = 1 , j 2  = 0, m2 = 0) 
are the excited state and the ground state of a hydrogenic atom in the case of the 
Lyman-a transition (2P+ 1s)  [ l l ,  121. The symbols a * ( w )  denote the creation and 
annihilation operators for a photon with frequency w and quantum numbers j = 1,  
m = m, - m, = 0 (which follows from the selection rules) and T = 0 (electric multipole 
field). The coupling constant g(w) includes all the retardation effects and is given by 
[I21 

where y L- lo8 s-' is the Einstein coefficient for spontaneous Lyman-a radiation, wo* 
1 O I 6  s-'  is the energy separation of the two atomic levels and uo= cm is the Bohr 
radius. 

In order to apply the POM we choose the PO of lowest order: 
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where Is"' and Is('' are the unit operators in the subspaces of the order N=O and 
N = 1, respectively, and I V) and 10)  are the vacuum and one-photon states of the 
radiation field, respectively. Furthermore, we assume that the following initial condi- 
tion holds: 

POI+(O)) = I+(W 

where b, , ( t )  is the probability amplitude for finding the atom in state lj) and no 
photons in the radiation field. Then, by using the POM in the first-order BA, we obtain 
for the probability amplitudes 

bj,o( t ) = ( j l@ ( VI p o l  +( t )) 

two decoupled integro-differential equations: 

= - lom dw f( w ) Io' d T exp[ -i ( w 2) + w ) 71 bj,o( t - T ) (28) dt  27r 

= - ( - l )Jwo j = 1 , 2  

and 

Equation (28) can be adequately treated by using the Laplace transform and its 
inverse. A very involved calculation (which was already presented in the case of j = 1 
in [ 1 1 1  and goes quite analogously f o r j  = 2), yields for the probability amplitude bj,o( t )  
a Markovian term R j ( t )  stemming from the pole uj and a non-Markovian term Dj(t) 
describing the deviation from Markovian behaviour [ 111: 

RJ(t)  = b,,O(O)(l+ A R )  exp(-iwPt) exp(-iujt) (31) 

and 

where the error terms: IARI, IAu/ujl and IAD(t)/Mj(t)l are obtained by a very involved 
error estimation (for more details see [ 113). 
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of the atomic population inversion operator S’ =f(ll)(ll- 12)(21) can be easily obtained 
from (30), (31) and (34). 
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